

American Institute of Aeronautics and Astronautics

1

Simulation Environment for Orion Launch Abort System
Control Design Studies

J. Dana McMinn*
NASA Langley Research Center, Hampton, VA 23681

E. Bruce Jackson†

NASA Langley Research Center, Hampton, VA 23681

David M. Christhilf‡
Lockheed-Martin Engineering Services Company, Hampton, VA 23681

Abstract
The development and use of an interactive environment to perform control system design

and analysis of the proposed Crew Exploration Vehicle Launch Abort System is described.
The environment, built using a commercial dynamic systems design package, includes use of
an open-source configuration control software tool and a collaborative wiki to coordinate
between the simulation developers, control law developers and users. A method for
switching between multiple candidate control laws and vehicle configurations is described.
Aerodynamic models, especially in a development program, change rapidly, so a means for
automating the implementation of new aerodynamic models is described.

Nomenclature
 ACS = Attitude Control System
 API = Application Programming Interface
 CEV = Crew Exploration Vehicle (Orion)
 CM = Crew Module
 G&C = Guidance and Control
 LAS = Launch Abort System (abort motor, tower, control motors, etc.)
 LAV = Launch Abort Vehicle (LAS with CM)
 LES = Launch Escape System (Apollo)
 SAREC = Simulation Architecture for Evaluating Controls
 SVN = Subversion (version control software)

I. Introduction
HE Orion Crew Module (CM), as shown in Figure 1, is a conical frustum-shaped capsule similar to the Project
Apollo Command Module but approximately 28% larger to accommodate as many as six crew members.1 The

vehicle is under development by the Lockheed Martin Corporation as a component of the Manned Exploration
Initiative known as Project Constellation.

For crew safety during launch, the CEV is required to have an abort capability throughout the launch ascent
whereby the crew can be transported away from a malfunctioning booster in a trajectory that is amenable to
parachute landing (typically on water). The Apollo program utilized a solid-rocket Launch Escape System (LES)
that was ballasted with lead to provide aerodynamic stability during the initial launch abort and further relied on
passive, timer-based, systems to reorient and stabilize the capsule for parachute deployment. In an attempt to save
weight and add capability, the LAV is being designed to use an active Attitude Control System (ACS) located in the
LAS tower to both stabilize the vehicle in the initial abort configuration and then to reorient the vehicle for
parachute deployment.

* Aerospace Technologist, Dynamic Systems and Control Branch, M/S 308, AIAA Senior Member.
† Aerospace Technologist, Dynamic Systems and Control Branch, M/S 308, AIAA Associate Fellow.
‡ Research Engineer Staff, Langley Program Office, c/o NASA-LaRC M/S 308, AIAA Member.

T

American Institute of Aeronautics and Astronautics

2

To assess the physics and challenges of the ascent abort problem, a multi-center team of NASA researchers
began collaboration in the fall of 2005. The first priority was the development of a simulation of the Apollo LES,
which could then be scaled-up to CEV size and used as an initial study configuration. The CEV design would not
emerge until contractor selection in the late summer of 2006, which was still some ten months away. With the
Apollo-based simulation the government began the design of an active controller for the Launch Abort System
(LAS) to replace the passive Apollo system. During the run-up to contractor selection the government evolved its
own candidate CEV LAS designs, which provided valuable aerodynamic data, mass, and propulsion system
performance estimates. As data became available, the baseline simulation was updated and the control design
modified to continue to meet prescribed performance requirements.

By the time of contract award, the government was concluding the design of its third CEV revision. This third
design did not receive much scrutiny by the team because the contractor design was available. Using comparative
analyses and simulations, over past six months, the government and contractor have been working together and the
control designs have been resolved into a single design for government analysis. This design continues to evolve as
new test data becomes available.

While the standard NASA CEV simulation is written entirely in C and FORTRAN, the original government LAS

controller design and subsequent comparative studies have been performed in a CEV LAS guidance and control
(G&C) simulation built using an off-the-shelf dynamic system analysis package coupled with open-source support
tools. This simulation was required to support a rapidly-changing baseline vehicle configuration; these changes
included mass properties, abort rocket thrust levels and nozzle locations, reaction control system thrust levels,
attitude control motor nozzle configurations and thrust levels, and aerodynamic database modifications. Derivative
studies of alternative configurations are also supported with the same set of tools.

Figure 1. Elements comprising the Orion vehicle

American Institute of Aeronautics and Astronautics

3

II. Simulation Tools
This paper describes the tools and simulation environment in use by the NASA Langley CEV LAS G&C team.

In addition to a brief description of the tools, special features and capabilities of the tool are pointed out where they
make a significant improvement to the effectiveness of the team.

A. Simulation Environment
The CEV LAS G&C simulation is based on an older version of the SAREC environment2, itself based on the

MathWorks® Simulink® commercial simulation and dynamic analysis tool. SAREC was developed by one of the
authors at NASA Langley for control law development for a sub-scale blended-wing-body flight test vehicle.

Figure 2. Top level diagram for the G&C simulation

The G&C simulation is a full six degree-of-freedom, non-linear, spherical rotating Earth, rigid-body simulation
environment utilizing quaternion attitude propagation. Figure 2 shows the top-level diagram of the simulation. The
main blocks are the plant, controller and environment. Figure 3 shows the structure below the plant block. The
diagonal layout is a feature of SAREC that follows the information flow from upper left to lower right with a
minimum of information flowing in the reverse direction. The plant block is driven with information from the
environment model and the control system. All outputs of the sub-blocks are captured in the main signal bus for
recording during a simulation.

American Institute of Aeronautics and Astronautics

4

Figure 3. Open-loop plant subsystem block.

The mass and inertia block, shown in Figure 3, has been built to accommodate changes with no hard-coded

numbers that pertain to the vehicle. The mass, inertia and center of mass of each modeled part of the vehicle are
parameters that are defined in a main set-up script that is executed prior to a simulation run. At each simulation step
the composite mass and inertia properties are computed. Similarly, the propulsion block has each jet or rocket
location, orientation, specific impulse, exit area and, if not throttleable, the thrust level defined in the main set-up
file. In this way no block diagram editing is needed to change a parameter. Edits are only needed to add more parts
or propulsive jets. It should be noted that to accommodate the stage separation there are two mass sub-blocks as
depicted in Figure 4. The upper block in the figure represents the CM only and the lower block represents the CEV
capsule plus the LAS, known as the LAV. These two blocks execute as ‘enabled subsystems’ so when not enabled
they do not execute and their outputs are zeroed. To represent different vehicle configurations, the same simulation
diagram is used with different set-up files to define the different mass or jet parameters.

American Institute of Aeronautics and Astronautics

5

Figure 4. Mass and inertia diagram depicting the enable triggers used for staging.

The aerodynamics block is linked in from an aerodynamics library model. The aerodynamic table interpolation

and build-up equations are currently provided by the CEV aerosciences team in the form of C Application
Programming Interface (API) which reads text-based data files. The G&C simulation framework accommodates
this by calling the C code as an external Simulink® “s-function.”

Configurable subsystem template blocks have been used to allow the user to select one of several aerodynamics

models at run time. Figure 5 shows the top-level of the aerodynamics library. The left-most block is the master and
the two blocks on the right are the possible selections. The master is linked to the simulation block structure. In
general, the choice of which block a master represents can be made with a mouse-click on the block or
programmatically. The G&C simulation uses the programmatic approach within the set-up script, where the
appropriate supporting data files are also selected.

Figure 5. Aerodynamics library showing template and available options for aerodynamics subsystems.

American Institute of Aeronautics and Astronautics

6

The control system is also implemented as a library block that is linked into the simulation. The linked block is

just under the controller block shown in Figure 2. Like the aerodynamics library, the controller library was
originally developed sequentially without the users having a choice of controller versions. When the configurable
subsystem model was implemented for the aerodynamics module, a similar update was made for the controller.
Now multiple versions of the controller exist in the control system library and the selection is made at run time. To
avoid confusion, the block annotation property of the configurable subsystem in the simulation is set such that the
block choice is displayed in the diagram below the block name. Further annotations can be made by turning on the
‘display tag’ property (enabled from within the Simulink® Block Properties -> Block Annotation menu) and then
setting the tag string within the setup script.

The environment block, in Figure 2, also uses a configurable subsystem to choose among available atmosphere

models in an atmosphere library. Currently, only a US 1976 standard atmosphere is provided as a functioning
model within the library. However, there is another block choice in which all the atmospheric terms (density,
pressure, temperature, speed of sound, and dynamic viscosity) are parametrically defined in look-up tables as
functions of altitude. This choice is convenient when comparing to an external simulation that employs a different
atmosphere model. In such cases, the time history data of those terms and altitude from the external simulation are
manipulated into a suitable matrix that satisfies the parameters. G&C simulations can then be compared to external
simulations with identical atmosphere models.

B. Version Control
From the outset of the project it was recognized that the G&C simulation development effort was going to

require configuration control to manage and facilitate the work among the developers as well as to provide a means
to keep a record of files exchanged with other organizations across the country. Subversion3 (SVN), an open-source,
multi-platform source configuration management tool, was chosen for software and documentation version control.

Through the use of a shared repository, team members could contribute, retrieve and track changes to vehicle
simulation components, auto-coded models, check-case data and project documentation despite using different
workstation hardware platforms. Both command-line and graphical user interfaces are available for Subversion for
most computer platforms.

Employing SVN as the version control package, project files are developed within a 'trunk' directory tree.

Whenever any changed file is checked in to the repository, the overall repository revision number increments by
one. This revision number applies to every file in the repository and provides a way to refer to a version, or instance,
of the simulation. In effect, the revision number corresponds to the state of the project at an instance in time.
Furthermore, SVN has the ability to efficiently (in terms of speed and storage requirements) associate a 'tag' with a
revision number. The team uses tags to more easily identify and record versions that correspond to significant
versions of the G&C simulation- for example, the original Apollo-based simulation in final form. All revisions
committed after the Apollo tag pertain to the CEV variants.

Another feature of SVN is the ability to spawn a development branch from the trunk. A new branch can be

spawned at any time, and multiple branches can co-exist. The appeal of the branch feature is that it isolates
development of new features from the trunk where users may continue to operate and develop as normal. And, it
affords those working on the branch the ability to update and collaboratively develop just as though they were
operating on the trunk. When features of the branch are deemed ready, they can be merged back into the trunk. The
team has used branches to incorporate new subsystem models while leaving working, tested versions on the trunk
available for other team members.

SVN also has the ability to refer to files in other branches. For example, a user wanting to assess the new

aerodynamic model before the branch has been merged back into the trunk can use the SVN switch command to
replace his local copy of the aerodynamics directory with one from the development branch. This switch remains in
effect until cancelled (reversed).

Branches have also provided a means to more easily evaluate alternative vehicle and control system

configurations. Without version control one would have to start with a copy of the original simulation. The
drawback of this is that the now unconnected simulations may contain much common code that would gradually
diverge. Updates or fixes made in one place would have to be manually propagated to the other. Keeping an

American Institute of Aeronautics and Astronautics

7

alternative configuration as a branch allows an automatic means of propagating changes from the branch to the trunk
or vice versa.

Some additional features of the SVN tool are retrieval of old files, differencing files and logging of user

comments. At any time a user can retrieve from the repository any file (or set of files) current or past. The user can
specify the files by revision number or date; in effect, having nearly infinite 'undo' capability. These files can then
be compared with the other versions using the SVN diff command. This feature is useful when de-bugging the
simulation or assessing what changes might be lingering in a local copy prior to a check-in. When a check-in is
performed, SVN allows the user to specify a description of the change(s). This has been extremely useful to the
team by providing a narrative history of changes.

The repository is currently (July 2007) at revision number 985, contains approximately one thousand files, and

requires about 260 MB of storage with all branches, tags and information to undo or return to any revision.

C. Aerodynamic Model Import
As the CEV project progressed, a variety of vehicle configurations were considered and analyzed. These

configurations came from various of sources and in a variety of formats. The aerodynamic database went through
several iterations of format before becoming standardized, including text-based, binary-based, and spreadsheet-
based formats; the original Apollo data was processed either manually or via optical character recognition tools.
The wide variety of formats were all converted, via scripts and other custom-built utility programs, into skeletal
DAVE-ML4 aerodynamic model files which could then be imported into the Simulink® simulation tool. Reliance on
the standard Unix ‘make’ utility, with it’s makefile scripts, provided a reliable and repeatable automation process to
reduce human error. The DAVE-ML format also provided a convenient method to record information about the
origins and subsequent modifications to each database, as well as allowed use of standard tools to inspect the data
tables.

DAVE-ML, a human- and machine-readable text file format based on XML, is being proposed as an AIAA
standard format for aerodynamic models. One text file is used to describe model I/O, multidimensional data tables,
buildup equations (using MathML syntax), check case data, data uncertainty boundaries and model provenance.
Thus, one file can be (with appropriate automation) realized as code or Simulink® block diagrams through batch
scripts or can be read into memory structures at run-time with no intermediate code compilation5.

With the adoption by the CEV project of a text-based aero table format with a standard C API aero model, the
need to re-host a variety of aerodynamic models has been reduced. It is anticipated that as the configuration
stabilizes later in the project, a DAVE-ML version of the aero model will be revisited.

D. Control System Model Development
Early in the CEV LAS development process, NASA Langley engineers developed a control law to provide active

control of the CEV vehicle during launch abort (prior to CEV contract award) to explore the feasibility and benefits
of an active control system. This control law was developed using a commercial dynamic system modeling tool
(MathWorks® Simulink®) in which the CEV G&C simulation was also written. However, the need to share this
control law with other users within a C-based simulation environment required the translation of the block diagram
algebra into C code. Another MathWorks® product, Real-Time Workshop®, was utilized to automatically generate
the equivalent C-code for this purpose.

As the design matured, repeated changes to the control law suggested that the 'autocode' process should be
automated. To facilitate this, the conventional UNIX make utility was brought to bear. A makefile was developed
that:

1. determines if the control law model has changed
2. runs Matlab in batch mode to autocode the control law into C
3. compiles the resulting C source into a standalone utility program
4. runs the standalone utility program against a set of checkcase inputs
5. compares the resulting outputs with the outputs of the same checkcase in Matlab
6. reports on success or failure of the comparison

The makefile also provides rules to create a distribution tarball of the resulting source code, any required headers,
the checkcase data and README files to facilitate sharing with other teams.

American Institute of Aeronautics and Astronautics

8

Once a CEV contractor was engaged, the contractor began to produce control laws. In order to analyze these
control laws, which were written in C, these C routines were translated into equivalent Simulink® block diagrams by
hand. To ensure proper operation of the Simulink® equivalent routine, each subroutine was compiled with a C-based
s-function wrapper and linked into a special test model in Simulink®, allowing the C function to be exercised in
parallel with the Simulink® equivalent. Differences between output signals from the native C and Simulink®
equivalent routines were root-square-summed and compared against a tolerance (typically within 1/100 %) by an
automatic unit test script; the complete equivalent Simulink® realization of the contractor-developed control law was
then compared against checkcase time history data provided by the contractor to verify overall system operation.

E. Collaboration Tools
An interactive, collaborative, web-based common bulletin board wiki, based on the open-source Soks wiki6, was

implemented. This allowed posting of how-to lessons and team contact information, and sharing of an electronic
library of documentation that could easily be edited by any team member with change tracking. Some unlearning of
emailing methods was required to use this capability. Perhaps the most utilized wiki feature was the formatted
revision log, an example of which is shown in Figure 6. Automated scripts generate the web pages, providing easy
access to the revision logs for the simulation allowing the team members to keep up with changes to the simulation.

Figure 6. Wiki page displaying formatted SVN revision log information.

American Institute of Aeronautics and Astronautics

9

III. Lessons Learned

A. Version Control Simplifies Development and Coordination
Implementation of a version control system has made coordinated development and use of simulation tools

easier by ensuring that everyone has access to the most recent copy of the simulation models and analysis tools.
And, it eliminates the implementation of a 'sneaker net' (person-to-person) sharing of disks or thumb drives, which
fosters an ambiguous, and likely undocumented, information dissemination chain. An open-source solution was
found that satisfies most version control needs. It was also learned that frequent updates by each subscriber are a
good idea.

B. Branches and Tags Benefit Parallel Development
Use of branches and tags helps segregate simulation development from production use; merges of development

branches back into the production 'trunk' can be performed at an agreed-upon point of the project. It was discovered
that keeping the branch fresh with frequent merges from the trunk of minor changes is necessary to help ensure a
successful merge of a branch back into the trunk.

C. Wiki Pages Enhance Communications
Use of a collaborative internal wiki website has enhanced team communication and makes up for one missing

feature of the Subversion version control system: keeping a log of merge points. A dedicated wiki page lists all
known branches and tags for easy reference. Another wiki page is used to display recent revisions to the production
'trunk' of the common toolset; this page is automatically updated with each commit (Figure 6). We are pleased with
the utility of this and heartily recommend this new technology for internal communications.

D. Automate Repetitive Tasks As Much As Possible
In the initial stages of the project, implementation of the initial (Apollo) aerodynamic database and autocoding of

the first abort system control law was done manually. By the third or fourth revision, these tasks had become
tedious. A good investment of resources was to automate (as much as possible) these tasks, and to provide
README files and wiki pages with instructions so anyone could run them. Development and testing of the
automated scripts and makefiles took some time, but this investment was regained several times over with continual
inclusion of new aerodynamic models and control laws, despite adopting three different formats for aero data.

E. Importance Of Documentation and Unit Testing
Incorporation of one externally-produced subsystem model was hampered by a lack of understanding of some

coordinate systems to which the models referred. This lack of understanding required extensive correspondence
between the implementer and the developer to resolve. Good project documentation is always a good thing and is
well worth the investment, but is often neglected by single developers.

Another aspect that made code reuse difficult was lack of unit tests. In addition to ensuring proper
implementation of re-hosted code, the unit tests themselves (if well written) can serve as a starting point for
documentation since each test set represents an example of how to use the code.

F. "Remove Before Flight" Tags Prevent Inadvertent Elbow Tracks
When working with a large multi-layer Simulink® block diagram it is difficult to keep track of temporary edits

made to the diagram. These edits may have been made to turn off some feature or to change something for testing
purposes, but remembering all the changes can be challenging. The danger is if a temporary change accidentally
gets committed to the repository; everyone will receive the change the next time they update. To help keep track of
those temporary edits a new Simulink® library palette has been created. The palette contains many of the more
commonly used blocks and potentially could contain all the available blocks. The key feature of this palette is that
the blocks are colored with a non-standard color and their tag property is set to “REMOVE BEFORE UPLOAD”.
The block annotation property for each of these temporary blocks has been set to display the tag value below the
block name. This provides a visual reminder to remove the blocks before checking the simulation into the
repository. As a further safeguard, at initialization, the simulation automatically performs a find_system
command to scan the entire block diagram (including linked files) for the existence of tags with the “REMOVE
BEFORE UPLOAD” text. If such a tag is found, a warning message is displayed within the command window and
an auditory alert is made. This functionality is implemented with m-code inserted in the model initialization
callback routine.

American Institute of Aeronautics and Astronautics

10

IV. Concluding Remarks
To date the CEV LAS G&C simulation has been significantly modified at least six times to keep up with the

evolving CEV LAS design. Each new design brings with it a potentially new structure, as the aerodynamics
database may bear no resemblance to the previous model and the mass properties may be more (or less) detailed
than before. This report contained a brief description of the simulation environment used to build the initial CEV
launch abort control system, as well as to perform subsequent analysis of the currently-selected control architecture.
The environment was built using readily available commercial and open-source software to provide a flexible,
responsive framework to support studies of a variety of CEV LAS configurations and control laws. Where
appropriate, features that have been especially useful in improving the efficiency or accuracy of the simulation have
been pointed out. To support effective information flow and documentation, an open source version control
software package has been used. Communication among the team members has been further enhanced through the
use of a wiki, again based on open source software. This report describes these tools and offers a lessons-learned
narrative regarding the simulation development effort.

References
1NASA TM 2005-214062, " NASA’s Exploration Systems Architecture Study," November 2005.
2Christhilf, David M., and Bacon, Barton J., "Simulink-Based Simulation Architecture for Evaluating Controls for Aerospace

Vehicles (SAREC-ASV)." AIAA paper 2006-6726, presented at the AIAA Modeling and Simulation Technologies Conference
and Exhibit, 21 August 2006, Keystone, Colorado.

3http://subversion.tigris.org [cited 16 July 2007].
4Jackson, E. Bruce, Hildreth, Bruce L., York, Brent W., and Cleveland, William, Evaluation of a Candidate Flight Dynamics

Model Simulation Standard Exchange Format. AIAA paper 2004-5038, presented at the AIAA Modeling and Simulation
Technologies Conference and Exhibit, 17 August 2004, Providence, Rhode Island.

5Hill, Melissa A., and Jackson, E. Bruce, The DaveMLTranslator: An Interface for DAVE-ML Aerodynamic Models. AIAA
Paper 2007-6890, to be presented at the AIAA Modeling and Simulation Technologies Conference and Exhibit, August 2007,
Hilton Head, South Carolina.

6http://www.soks.org [cited 16 July 2007].

